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~ = &[-Fi.Re(dW’I/dZ) + iiuIm(dlJ’l/dZ)], (5b)L1

kl = tanh(ira/2h)/ tanh(nb/2h), (5C)

dW1/dZ

(~/2h)—

tanh(rra/2h)c osh2(nZ/2h) ~(1 – Z~)(l – k~Z~) ‘

(5d)

Zl=tanh(nZ/2h )/tanh(ma/2h), (5e)

~~ = &[-& Re(cZW/dZ) + i& Im(cZW/dZ)]

(5t-)

k anddlV/dZ aregiven in(3b)and (3c), andk’ = <~.

III. RESULTS

Onr analytical expressions are applied to the supported coplanar

waveguide considered in [5] andcoplanar strips. The computed field

profiles are plotted in Figs.3 and 4. The results obtained using

the point matching method [9] are also given in the figures for

comparison. The series expansion including 400 terms is used and the

calctrlated domain is 10 mm. From Fig. 3, onecansee that the results

forthecase~= –0.3mmare notgood. However, this isunimportant

because only the fields near the electrode gaps are of interest for

the practical applications. In Figs. 3 and 4, the results at v = O

obtained by the point matching method are not included because of

the serious oscillations. The case g = –h is not calculated since the

normal electric field is not continuous. The comparison shows that

the proposed analytical expressions give excellent descriptions for the

field distributions, even for the case when the coplanar waveguide has

a large dielectric difference between the substrate and the supporting

material.

IV. CONCLUSION

h summary, we have derived analytical expressions forcalculat-

ing the field distributions in two typical supported coplanar lines,

including coplanar lines with finitely thick substrate. This method

provides an accurate, simple and fast approach to calculating the

field distributions in coplanar lines. Calculated results agree well

with those obtained using the point matching method. Although

only symmetric coplanar waveguide and coplanar strips have been

discussed, our method can also be applied to the analysis of other

coplanar transmission lines, such as covered supported coplanar

waveguide, overlayed coplanar waveguide [5], and modified coplanar

stnpline [7]. Using the coordinate transformation [11], this method

can be extended to analyze the coplanar lines fabricated on anisotropic

substrate, which are widely used for integrated optical devices [12].

Hence the present methods are very useful for MMIC and other

similar applications where field distributions are essential.
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Network Representation and Transverse

Resonance for Layered Chirowaveguides

Xu Shanjia and Du Kai

Abstract-This paper presents an equivalent network method for

dispersion analysis of general chirowaveguides. First, wave propagation
in each homogeneous layer is represented by two pairs of transmission
lines, the matrix wave impedance is defined. Next, the transformation
properties of the input impedance are established. It is then demonstrated
that the transverse resonance condition involving the previously obtained
matrix impedance leads to the dispersion equation for the wavegnides.
The numerical results show that this network approach is feasible and
practicable.

I. INTRODUCTION

In recent years, anumber ofpapers have appeared in the literature

[1]-[5] attaching different tindsof chirowaveguides and the guided

wave properties in these new waveguides. Creative use of chiral

material, especially for integrated circuits, has been envisioned. The

multilayered planar chirowaveguides will become the building block

and thus is the foundation for analysis of a large class of chiral

guided wave strictures. Inouropinion, theexisting methods are not

general enough to enable the interested worker in the microwave and

millimeter-wave areas to readily solve for the propagation constant
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Fig. 1. Multilayered planar chkowaveguide.

and electromagnetic fields in a multilayered planar structure having

chiral layers.

The technique of impedance and equivalent network representation

is often used to obtain the dispersion characteristics of isotropic

waveguides. Based on the experience in treating multimode network

problem, we estimated that such a powerful technique can be ex-

tended to chiral cases. Indeed, it will be shown in this paper that the

network approach provides both insight and a simple solution to the

guidance problem of multilayered chirowaveguides.

As a result of the additional coupling mechanisms acting between

field components due to the chirality, in the present analysis the

wave impedance expands into a 2*2 matrix form, and the coupling

between the eigenmodes at the interface of two different chiral layers

is represented by an impedance inverter.. In order to use the transverse

resonance technique, we also give the necess~ impedance trans-

formation relations for different interfaces and boundary conditions.

Finally, as an example the surface wave dispersion properties for a

two-layer open chirowaveguide are analyzed by the present network

method and the effectiveness of the network method is tested.

II. FORMULATION AND NUMERICAL RESULTS

A uniform multilayered planar chiral structure is shown in Fig. 1.

The chiral parameters can be zero for anyone of the layers corre-

sponding to the isotropic dielectric. Neither, either, or both of the

two semi-infinite regions can be a perfectly electric or magnetic

conductor. Such a structure is sufficiently general as a basis for the

potential planar chirowaveguides.

In order to establish a network representation for this structure, we

first consider the electromagnetic wave propagation property in each

homogeneous layer. For exp(jut) time harmonic fields, one form of

the chiral constitutive relations reads

D = CO(CE+ zo&H) (la)

13 =No(–~o@7 + AH) (lb)

where FO,PO, e and p have their usual meanings, ~ is the chiral

admittance ZO and ~0 are the wave impedance and wave admittance

in vacuum. As being used in reference [4], we adopt the normalized

distances and a normalized “magnetic field” that are marked with

primes

# = koz, / = /coy, z’ = ,kO.z, H’ = ZOH. (2)

We restrict our discussion for the case in which only plane wave

propagation of the form exp ( –j~:’ ) will be considered and therefore

we have

a—=0, v’=& =&L-3B6z.
dy’

(3)

It should be noted that here @ is an effective refractive index rather

than the longitudinal wavenumber, since z’ is a normalized distance.

From Maxwell’s equations, we can obtain the following matrix

hfinity Orshort, 0pr2tl circuit

● 00000

‘:i....~!
‘“ 535552.

Infinity or shorg open circuit

Fig. 2. Transverse equivalent network representation.

equations:

(a’dw :)(2) (4a)

W=e 7?) (:)=2(2) ‘4b)

“( )Ey
H;

()=D -HE’ (4C)
Y

in which k+k– = We+ (Z, k+ = j~ + @,k– = –j~ +- @.

Here sign symbol + and – indicate, respectively, the left and right

circular polarization. Introducing the transformation matrix ~ so as

to diagonalize matrix ~ and ~, and defining the voltage and current

column vectors V and 1 yields

Then (4b) and (4c) lead to

(5)

(6a)

(6b)

One can see that (6a) and (6b) have the form of transmission

line equations. In fact, the transformation in (5) corresponds to the

customary wave splitting technique in attacking chiral problems. The

above mathematical manipulation is nothing new; we emphasize here

the physical insight gained from (6). These two pairs of transmission

line equation constitute the basis of our equivalent network model.

One can also see that k+ and k– are the normalized wave numbers

of right circular polarized (RCP) and left circular polarized (LCP)

plane waves. Thus, the two pairs of transmission line equations

correspond to RCP and LCP plane waves, respectively. Within each

homogeneous layer, the propagation constants of the RCP and LCP

plane waves are independent. They couple to each other only when
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Fig. 3. (a) Impedance transformation within one layer. (b) Impedance transformation at the bounday interface. (c) Input imoedance matrix of a layer
terminated with open or short circuit.

encountering the disccmtinuity plane. A transverse equivalent network

is shown in Fig. 2, where the coupling process is illustrated by a

block.

In order to use the transverse resonance technique to analyze

the dispersion of the multilayer chirowaveguides, different kinds

of impedance transformation relations are necessary. Without losing

generality, we will discuss them in the following three cases:

1) Transformation of input matrix impedance within a homoge-

neous layer [Fig. 3(a)].

As shown in Fig. 3(a), the input impedance matrices ~1 and ~z are

defined looking downwards from reference plane 1 and 2. According

to the definition of the impedance for the multimode network, we

have

VI = ZII1; V2 = Z212 (7)

and a matrix eigen-impedance is introduced as

20= (Z79 ‘“’=+%]’” ‘8)
Let

(9)

t is easily found that ~1 and Z2 obey the following relation

~Z = ~1 [cos(~={ )Zl + j sin(~Z/ )ZO]

~[COS(FZl)ZO + j sin(7Zl)Z~]-’Z0 (lo)

where cos (~~ t) and sin (~$ 1) are diagonal matrices, the elements at

the nth position in the diagonal matrices are, respectively

COS(~.Z) = [b~. cos(7Z~nl) and

sin(~~l) = [b~n sin(~Z~,Ll)].

2) Impedance matrix transformation at the interface of two media

[Fig. 3(b)].

Refernng to Fig. 3(b), the input impedance matrices ~1 and ~z

are defined just below and above the boundary plane looking toward

the interior of material 1

VI = ZII1; V2 = 27212. (11)

The boundmy conditions read

()-E

(.)

E.
MIVI = ~~ = M2VZ; ~111 = ~, = E21, (12)

Y

where al and %2 can be obtained by substituting respective

material parameters into the definition of ~, and 13g, 13z, H:, VI, 11,
etc., are the values of the corresponding components at the boundary.

It can be found that

Z2 = z;1z1z1B;1Z12. (13)

3) Input impedance matrix when terminated with open or short

circuit [Fig. 3(c)].

In contrast to achiral case, here the input impedance matrix at the

surface of a perfect electric or magnetic conductor is not a zero matrix

or other constant matrix. This is due to the fact that our “voltages” and

“currents” are linear combinations of both electric and magnetic field

components. However, the boundary condition of a perfect conductor

can be represented by the input impedance matrix looking toward the

termination from the interior of the adjacent material. As depicted in

Fig. 3(c), we will find a mathematical expression for Z(1) .

On the surface of an electric (short circuit) or a magnetic (open cir-

cuit) conductor, the boundary condition yields for the two components

of V and 1

V+(o)= (–l)n L(o); i+(o) = (–l)ni, (o) (14)

where n = corresponds to the short and n = 2 to the open circuit. The

“voltages” and “currents” on the transmission line can be expressed as

(%)=(C:(p’+’(-1) COS(LZ)

(). %(0)
i+(0)

j sin(~.+1)

()(

i+(z) = 20+
izl (–l)njsin(/3c_l)

z,_

(). ~+(o)

i+(0)

where

jZo+ sin(~z+l)

(–l)njZO- sin(fiz-l) )

(15a)

cos(@.+1)

(-1~ cos((?_2)
)

(15b)

-==

Then we have

(

Cos(p.+1) jZO+ sin(13z+l)
‘(Z) = (–1)” CoS($._l) (–l)njZO- sin(~.-l)

)

(16)

With the abo~e impedance transformation relations at each in-

terface between different chiral layers, we can calculate the input

impedance matrix ~.P and ~d., looking upward and downward

from an arbitrary reference plane as shown in Fig. 2. Using the

transverse resonance condition, we can get the dispersion equation

for the structure

det[~.P + ~dn] = O (17)

where det denotes determinant of matrix.

It should be appreciated that the above analysis also holds when

some of the materials are achiral, except that a few mathematical

expressions need specific attention. When treating achiral media, the

field components are expanded in terms of two circularly polarized

plane waves with equal wave numbers.
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Fig. 4.

To verify the effectiveness of the network method developed in

this paper, we have calculated a two-layer open structure as shown

in Fig. 4. The value of media parameter are assigned as

c1 = 62 = 4.41, ,. = 4.0, & = –j2.lw,,

(2 = –j2.lm?, dl = D/3, dz = 2D/3.

When ttl and K,2 are chosen to be equal, we get exactly the same

results as in [2]. When K1 and m deviate from the initial value of

0.01 (M,l = 0.01 + 0.005, or K2,1 = 0.01 + 0.009), the change of

eigenvalue is shown in Fig. 5 by the arrows. Because of dz > dl, it is

expected that K2 contributes more to the change than K1 does, i.e. as

K2 increases, the pairs of curves originally having the same cut off in

the chiral limit will more and more separate from each other [2]. This

trend can be observed in Fig. 5. Judging from this, the effectiveness

and accuracy of the present approach are thus verified, though no

comparison is given in Fig. 5 between our results and others because

of no data available for a two-layer open chirowaveguide in the

literature.
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III. CONCLUSICJN

an equivalent network method for the disper-

sion analysis of general multilayered planar chirowaveguides. Use has

been made of the concepts of multimode netw&k method for planar

dielectric waveguides. Different kinds of impedance transformation

relations are given, including the transformation of input impedance

matrix within a homogeneous layer, the impedance matrix transfor-

mation at the interface of two media and the input impedance matrix

for a layer terminated with an open or shlort circuit. Also, the trans-

verse resonance technique is extended to treat the chirowaveguides.
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Fast and Efficient Extraction of HBT Model

Parameters Using Multibias $-Parameter Sets

Seonghearn Lee

Abstract-Accurate parameter extraction tectilque has been presented
for a small-signal equivalent circuit model of AIGaAs/GaAs HBT’s. This

technique makes use of multibias data o~timilzation regarding two sets of
S-par&eters in the active mode and one in the cut-off mod~, under the
physics-based constrain that current-dependlent elements in two active
bias circuits are linked each other by the ratio of their currents. This
multiblas optimization as well as the constrain imposed on intrinsic

parameters may reduce the degree of freedom of circuit variables and
increase the probability of finding a global minimum result. As a result
of this extraction, good agreement is seen between the circuit models and

their measured S-parameters in the frequency range of 0.045 to 26.5 GHz.

1. INTRODUCTION

For the development of microwave circuit applications using

heterojunction bipolar transistors (HBT’ s), it is essential to use an

accurate HBT equivalent circuit model for simulating monolithic mic-

rowave integrated circuit (MMIC). Although physical and analytical

HBT models have been reported previously [1], [2], an empirical HBT

model requiring circuit parameters extracted from measurements has

been generally used. In order to provide precise parameter values,

reliable and efficient extraction method should be established. In a

typical approach, a small-signal equivalent circuit model is optimized
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