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B = ﬁ%[—ame(dwl 1dZ) + ,Im(dW /dZ)], (5b)
ky = tanh(wa/2h)/ tanh(zwb/2h), (5¢)
AW, /dZ
— (m/2h)
" tanh(ma/2h) cosh®(w Z/2h) /(1 — Z2)(1 — k2Z2)
(5d)
Z1 = tanh(wZ/2h)/tanh(ma/2h), (5e)
E, = Tf{’m[—ame(dw’/dm + @, Im(dW/dZ)]
(51)

k and dW/dZ are given in (3b) and (3¢), and k' = /1 — k2.

III. RESULTS

Our analytical expressions are applied to the supported coplanar
waveguide considered in [5] and coplanar strips. The computed field
profiles are plotted in Figs. 3 and 4. The results obtained using
the point matching method [9] are also given in the figures for
comparison. The series expansion including 400 terms is used and the
calculated domain is 10 mm. From Fig. 3, one can see that the results
for the case y = —0.3 mm are not good. However, this is unimportant
because only the fields near the electrode gaps are of interest for
the practical applications. In Figs. 3 and 4, the results at y = 0
obtained by the point matching method are not included because of
the serious oscillations. The case y = —#h is not calculated since the
normal electric field is not continuous. The comparison shows that
the proposed analytical expressions give excellent descriptions for the
field distributions, even for the case when the coplanar waveguide has
a large dielectric difference between the substrate and the supporting
material.

IV. CONCLUSION

In summary, we have derived analytical expressions for calculat-
ing the field distributions in two typical supported coplanar lines,
including coplanar lines with finitely thick substrate. This method
provides an accurate, simple and fast approach to calculating the
field distributions in coplanar lines. Calculated results agree well
with those obtained using the point matching method. Although
only symmetric coplanar waveguide and coplanar strips have been
discussed, our method can also be applied to the analysis of other
coplanar transmission lines, such as covered supported coplanar
waveguide, overlayed coplanar waveguide [5], and modified coplanar
stripline [7]. Using the coordinate transformation [11], this method
can be extended to analyze the coplanar lines fabricated on anisotropic
substrate, which are widely used for integrated optical devices [12].
Hence the present methods are very useful for MMIC and other
similar applications where field distributions are essential.
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Network Representation and Transverse
Resonance for Layered Chirowaveguides

Xu Shanjia and Du Kai

Abstract— This paper presents an equivalent network method for
dispersion analysis of general chirowaveguides. First, wave propagation
in each homogeneous layer is represented by two pairs of transmission
lines, the matrix wave impedance is defined. Next, the transformation
properties of the input impedance are established. It is then demonstrated
that the transverse resonance condition involving the previously obtained
matrix impedance leads to the dispersion equation for the waveguides.
The numerical results show that this network approach is feasible and
practicable.

1. INTRODUCTION

In recent years, a number of papers have appeared in the literature
[1]1-[5] attacking different kinds of chirowaveguides and the guided
wave properties in these new waveguides. Creative use of chiral
material, especially for integrated circuits, has been envisioned. The
multilayered planar chirowaveguides will become the building block
and thus is the foundation for analysis of a large class of chiral
guided wave structures. In our opinion, the existing methods are not
general enough to enable the interested worker in the microwave and
millimeter-wave areas to readily solve for the propagation constant
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Fig. 1. Multilayered planar chirowaveguide.

and electromagnetic fields in a multilayered planar structure having
chiral layers.

The technique of impedance and equivalent network representation
is often used to obtain the dispersion characteristics of isotropic
waveguides. Based on the experience in treating multimode network
problem, we estimated that such a powerful technique can be ex-
tended to chiral cases. Indeed, it will be shown in this paper that the
network approach provides both insight and a simple solution to the
guidance problem of multilayered chirowaveguides.

As a result of the additional coupling mechanisms acting between
field components due to the chirality, in the present analysis the
wave impedance expands into a 2+2 matrix form, and the coupling
between the eigenmodes at the interface of two different chiral layers
is represented by an impedance inverter.. In order to use the transverse
resonance technique, we also give the necessary impedance trans-
formation relations for different interfaces and boundary conditions.
Finally, as an example the surface wave dispersion properties for a
two-layer open chirowaveguide are analyzed by the present network
method and the effectiveness of the network method is tested.

II. FORMULATION AND NUMERICAL RESULTS

A uniform multilayered planar chiral structure is shown in Fig. 1.
The chiral parameters can be zero for anyone of the layers corre-
sponding to the isotropic dielectric. Neither, either, or both of the
two semi-infinite regions can be a perfectly electric or magnetic
conductor. Such a structure is sufficiently general as a basis for the
potential planar chirowaveguides.

In order to establish a network representation for this structure, we
first consider the electromagnetic wave propagation property in each
homogeneous layer. For exp(jwt) time harmonic fields, one form of
the chiral constitutive relations reads

D =¢cy(eE + ZoEH)
B = pio(—YolE + pH)

(1a)
(1b)

where €g, tio, ¢ and p have their usual meanings, £ is the chiral
admittance Zy and Yy are the wave impedance and wave admittance
in vacuum. As being used in reference [4], we adopt the normalized
distances and a normalized “magnetic field” that are marked with
primes

2 =koz, y =koy, 2 =koz, H = ZH. %))

We restrict our discussion for the case in which only plane wave

propagation of the form exp(—j3+') will be considered and therefore

we have

1 9
v

a _ - _ 0
=0V T ox’

ay' " ko
It should be noted that here § is an effective refractive index rather
than the longitudinal wavenumber, since 2’ is a normalized distance.
From Maxwell’s equations, we can obtain the following matrix

éx — jhe.. 3)
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Infinity or short, open circuit
[ Impedance inverter |
e O o ¢ o o
z "pI | Im|pedance inverter |
Zh | Impedance inverter |
Infinity or short, open circuit
Fig. 2. Transverse equivalent network representation.
equations:
E.\__06 £ u E,
<H;> s (—e 5) (H’y )
0 (Ey\ _(i¢ —ju\ (E:\_—+ (TE.
‘a?(ﬂy) = (je i J\m. ) =4\ & ()
B ﬂ2 . : ,82
8 (EJ[) 3 ](1+k+k_ & I\t )
oz \H, )~ 8’ . 8’
(-g) ()
(=)
H,
—u By
= B( s ) 40)
in which kxk_ = pe+ &%, ky = jE+ /pe, k- = —j€ + /pe.

Here sign symbol + and — indicate, respectively, the left and right
circular polarization. Introducing the transformation matrix M so as
to diagonalize matrix A and B, and defining the voltage and current
column vectors V' and I yields

W= (ofe e ) v=(0)-w ()
1= () =w (i) ¢

Then (4b) and (4¢) lead to

8 2
gi.’. = k+ + 'k_’ v (63)
8—?':—,11_ =—k_i_
2
8611_ = <k_ + 5—)0_ (6b)

One can see that (6a) and (6b) have the form of transmission
line equations. In fact, the transformation in (5) corresponds to the
customary wave splitting technique in attacking chiral problems. The
above mathematical manipulation is nothing new; we emphasize here
the physical insight gained from (6). These two pairs of transmission
line equation constitute the basis of our equivalent network model.
One can also see that k4 and k_ are the normalized wave numbers
of right circular polarized (RCP) and left circular polarized (I.CP)
plane waves. Thus, the two pairs of transmission line equations
correspond to RCP and LCP plane waves, respectively. Within each
homogeneous layer, the propagation constants of the RCP and LCP
plane waves are independent. They couple to each other only when
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(a) Impedance transformation within one layer. (b) Impedance transformation at the boundary interface. (c) Input impedance matrix of a layer

Fig. 3.
terminated with open or short circuit.

encountering the discontinuity plane. A transverse equivalent network
is shown in Fig. 2, where the coupling process is illustrated by a
block.

In order to use the transverse resonance technique to analyze
the dispersion of the multilayer chirowaveguides, different kinds
of impedance transformation relations are necessary. Without losing
generality, we will discuss them in the following three cases:

1) Transformation of input matrix impedance within a homoge-
neous layer [Fig. 3(a)].

As shown in Fig. 3(a), the input impedance matrices Z; and Z are
defined looking downwards from reference plane 1 and 2. According
to the definition of the impedance for the multimode network, we
have

Vi=ZI; V=21, Q)]
and a matrix eigen-impedance is introduced as
/2
_ Zor O Bl
Zy = i Loy =% —F . 8
o= (5 2 ) mem2mtg ®
Let
5 (=5 0
B, = ( 0 (K2 — 32)1/2 ©

t is easily found that Z; and Z obey the following relation
ZZ = 71 [COS(BIZ)ZI + j Sln(ﬁzl)—z—()]

-[cos(B,1)Zo + jsin(B,1)Z1] Zo (10)

where cos(3,1) and sin(§,[) are diagonal matrices, the elements at
the nth position in the diagonal matrices are, respectively

cos(B3,1) = [6mn cos(B,,.,0) and
sin(B,1) = [bmn sin(B,,,,,1)]-
2) Impedance matrix transformation at the interface of two media
[Fig. 3(b)]. _ B
Referring to Fig. 3(b), the input impedance matrices Z; and Z,

are defined just below and above the boundary plane looking toward
the interior of material 1

Vi=2Z.1I; V3= Z.I,. an
The boundary conditions read
Mv.= (5 =My ML= (%) =wn (2
H, H,

where M; and M3 can be obtained by substituting respective
material parameters into the definition of M, and E, E., H,, V1,14,
efc., are the values of the corresponding components at the boundary.

It can be found that
Z. =M, M. Z. M; ' M.. (13)

3) Input impedance matrix when terminated with open or short
circuit [Fig. 3(c)].

...........

::::J"'l' i/ ’ L

e pg

-

S.C.or O.C
(c)

In contrast to achiral case, here the input impedance matrix at the
surface of a perfect electric or magnetic conductor is not a zero matrix
or other constant matrix. This is due to the fact that our “voltages” and
“currents” are linear combinations of both electric and magnetic field
components. However, the boundary condition of a perfect conductor
can be represented by the input impedance matrix looking toward the
termination from the interior of the adjacent material. As depicted in
Fig. 3(c), we will find a mathematical expression for Z(1) .

On the surface of an electric (short circuit) or a magnetic (open cir-
cuit) conductor, the boundary condition yields for the two components
of V and I

v (0) = (=1)"v_(0);

where n = corresponds to the short and n = 2 to the open circuit. The
“voltages” and “currents” on the transmission line can be expressed as

(’U+(1)) _( cos(Fz41 JZoy sin(fz4.1)
v_(1) )~ \(=1)"cos(B.-1) (=1)"§Zo_ sin(B.-1)

in(0) = (D)7, (0) (14

&)
Fsin( Gl
il (=1)"jsin(f.-1) (=1" cos(B,_1)
Ly—
)
where
ﬂr+=\/ﬂ; gl_—_—\/k—Q_Tﬂg,
Then we have
70 = ( cos(fAz41) J Zos sin(Bey )
(_l)n COS(/-}I—Z) (—1)n]Z0—- Sin(/jx—l)
%ﬁ‘l_) cos(f3,+1) -
(=1)™jsin(B(Bz_1) (—1)" cos(f_1)
Zo—
(16)

With the above impedance transformation relations at each in-
terface between different chiral layers, we can calculate the input
impedance matrix Z., and Za,, looking upward and downward
from an arbitrary reference plane as shown in Fig. 2. Using the
transverse resonance condition, we can get the dispersion equation
for the structure

det[Zup + Zan] =0 (17)
where det denotes determinant of matrix.

It should be appreciated that the above analysis also holds when
some of the materials are achiral, except that a few mathematical
expressions need specific attention. When treating achiral media, the
field components are expanded in terms of two circularly polarized
plane waves with equal wave numbers.
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12

w/vV

— £1=0.01 k2=0.01
----- - £1=0.005 £2=0.015
- £1=0.001 k2=0.019

Fig. 5. Dispersion property for the open structure shown in Fig. 4.

v =koDvel — €, w/V = /B2 — €a/\VEL — €.

To verify the effectiveness of the network method developed in
this paper, we have calculated a two-layer open structure: as shown
in Fig. 4. The value of media parameter are assigned as

€1 =€ = 4.41, ¢, = 4.0,

d1 - D/3,

& = =21k,

& =~ 2.1k, ds = 2D/3.

When x; and %o are chosen to be equal, we get exactly the same
results as in [2]. When x: and k2 deviate from the initial value of
0.01 (k2,1 = 0.01 £ 0.005, or k2,1 = 0.01 & 0.009), the change of
eigenvalue is shown in Fig. 5 by the arrows. Because of d2 > dy, itis
expected that k2 contributes more to the change than 1 does, i.e. as
K9 increases, the pairs of curves originally having the same cut off in
the chiral Iimit will more and more separate from each other [2]. This
trend can be observed in Fig. 5. Judging from this, the effectiveness
and accuracy of the present approach are thus verified, though no
comparison is given in Fig. 5 between our results and others because
of no data available for a two-layer open chirowaveguide in the
literature.
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1II. CONCLUSION

This paper presents an equivalent network method for the disper-
sion analysis of general multilayered planar chirowaveguides. Use has
been made of the concepts of multimode network method for planar
dielectric waveguides. Different kinds of impedance transformation
relations are given, including the transformation of input impedance
matrix within a homogeneous layer, the impedance matrix transfor-
mation at the interface of two media and the input impedance matrix
for a layer terminated with an open or short circuit. Also, the trans-
verse resonance technique is extended to treat the chirowaveguides.

REFERENCES

[1] H. Cory and L. Rosenhouse, “Electromagnetic wave propagation along a
chiral slab,” IEE Proceedings-H, vol. 138, no. 1, pp. 51-54, Feb. 1991.

[2] M. Oksanen, P. K. Koivisto, and 1. V. Lindell, “Dispersion curves and
fields for a chiral slab waveguide,” IEE Proceedings-H, vol. 138, no. 4,
pp. 327-334, Aug. 1991.

[3] M. I Oksanen, J. Hanninen, and S. A. Tretyakov, “Vector circuit method
for calculating reflection and transmission of electromagnetic waves in
multilayer chiral structures,” IEE Proceedings-H, vol. 138, no. 6, pp.
513-520, Dec. 1991. .

[4]. C. R. Paiva and A. M. Barbosa, “A method for the analysis fo bi-
isotropic planar waveguides-application to a grounded chiroslab guide,”
Electromagn., no. 11, pp. 209-221, 1991.

[51 M. L. Oksanen, P. K. Koivisto, and S. A. Tretyakov, “Vector circuit
method applied for chiral slab waveguides,” J. Lightwave Technol., vol.
10, pp. 2150-2155, Feb. 1992.

Fast and Efficient Extraction of HBT Model
Parameters Using Multibias S-Parameter Sets

Seonghearn Lee

Abstract—Accurate parameter extraction technique has been presented
for a small-signal equivalent circuit model of AlGaAs/GaAs HBT’s. This
technique makes use of multibias data optimization regarding two sets of
S-parameters in the active mode and one in the cut-off mode, under the
physics-based constrain that current-dependent elements in two active
bias circuits are linked each other by the ratio of their currents. This
multibias optimization as well as the constrain imposed on intrinsic
parameters may reduce the degree of freedom of circuit variables and
increase the probability of finding a global minimum result. As a result
of this extraction, good agreement is seen between the circuit models and
their measured S-parameters in the frequency range of 0.045 to 26.5 GHz.

1. INTRODUCTION

For the development of microwave circuit applications using
heterojunction bipolar transistors (HBT’s), it is essential to use an
accurate HBT equivalent circuit model for simulating monolithic mi-
crowave integrated circuit (MMIC). Although physical and analytical
HBT models have been reported previously [1], [2], an empirical HBT
model requiring circuit parameters extracted from measurements has
been generally used. In order to provide precise parameter values,
reliable and efficient extraction method should be established. In a
typical approach, a small-signal equivalent circuit model is optimized
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